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ABSTRACT

Preventive and reactive security measures can only partially
mitigate the damage caused by modern ransomware attacks.
Indeed, the remarkable amount of illicit profit and the cyber-
criminals’ increasing interest in ransomware schemes suggest
that a fair number of users are actually paying the ransoms.

Unfortunately, pure-detection approaches (e.g., based on
analysis sandboxes or pipelines) are not sufficient nowadays,
because often we do not have the luxury of being able to
isolate a sample to analyze, and when this happens it is
already too late for several users! We believe that a forward-
looking solution is to equip modern operating systems with
practical self-healing capabilities against this serious threat.
Towards such a vision, we propose ShieldFS, an add-on
driver that makes the Windows native filesystem immune to
ransomware attacks. For each running process, ShieldFS
dynamically toggles a protection layer that acts as a copy-on-
write mechanism, according to the outcome of its detection
component. Internally, ShieldFS monitors the low-level
filesystem activity to update a set of adaptive models that
profile the system activity over time. Whenever one or
more processes violate these models, their operations are
deemed malicious and the side effects on the filesystem are
transparently rolled back.

We designed ShieldFS after an analysis of billions of
low-level, I/O filesystem requests generated by thousands of
benign applications, which we collected from clean machines
in use by real users for about one month. This is the first
measurement on the filesystem activity of a large set of
benign applications in real working conditions.

We evaluated ShieldFS in real-world working conditions
on real, personal machines, against samples from state of the
art ransomware families. ShieldFS was able to detect the
malicious activity at runtime and transparently recover all
the original files. Although the models can be tuned to fit
various filesystem usage profiles, our results show that our
initial tuning yields high accuracy even on unseen samples
and variants.
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1 INTRODUCTION

Ransomware [20] is a class of malware that encrypts valuable
files found on the victim’s machine and asks for a ransom to
release the decryption key(s) needed to recover the plaintext
files. The requested ransom payment is typically in the
order of a few hundreds US dollars [13] (or equivalent in
crypto or otherwise untraceable currency [15]). Clearly, the
success of these attacks depends on whether most of the
victims agree to pay (e.g., because of the fear of losing
their data). Unfortunately, according to a thorough survey
dated November 2015 [2], about 50 percent of ransomware
victims had surrendered to the extortion scheme, resulting in
million of dollars of illicit revenue. In March 2014, Symantec
estimated that the Cryptowall gang has earned more than
$34,000 in its first month of activity. In June 2015, the FBI’s
Internet Crime Complaint Center [3] reportedly received
992 Cryptowall-related complaints between April 2014 and
June 2015, totaling $18M worth of losses. In the first three
months of 2016, according to a recent analysis [11], more
than $209 million in ransomware payments were made in
the US alone. From a technical viewpoint, ransomware
families are now quite advanced. While first-generation
ransomware were cryptographically weak, the recent families
encrypt each file with a unique symmetric key protected
by public-key cryptography. Consequently, the chances of
a successfully recovery (without paying the ransom) have
drastically decreased [16, 8].

Problem Statement and Vision. Kharraz et al. [7] were
the first to analyze a large corpus of ransomware samples.
The authors suggest that the filesystem is a strategic point
for monitoring the typical ransomware activity. In this pa-
per, we set the next research objective: Creating a forward-
looking filesystem that transparently prevents the effects of
ransomware attacks on the data. We make a step toward
such vision by proposing, implementing and evaluating an
approach that combines automatic detection and transparent
file-recovery capabilities at the filesystem level, all combined
in a ready-to-use Windows driver.

Preliminary Feasibility Assessment. Our first goal is
to understand how ransomware compares to benign soft-
ware from the filesystem’s viewpoint. We start by analyzing
in-depth how benign software typically interacts with the
filesystem on real-world computers. We use the I/O request
packets (IRPs) as the focal point of our analysis, as IRPs
are the basic data units originating from high-level opera-
tions (e.g., read file, open file). In practice, we performed
the first large-scale data collection of IRPs from real-world,
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ransomware-free machines, to profile the low-level filesystem
activity in normal conditions. To this end, we developed
IRPLogger, a data-collection agent that we installed on 11
machines used by volunteers for their typical day-to-day tasks
(i.e., personal, office, and development). We anonymized and
collected about a month worth of data, gathering more than
1.7 billion IRPs generated by 2,245 distinct applications (we
will made this data available to other researchers). Using this
collected data as a reference, we populated a set of analysis
machines with files and directory trees such that they resem-
ble the typical filesystem organization and content observed
in the 11 real-world machines. This step is essential to create
a realistic environment such that to trigger the ransomware
attacks. We then used IRPLogger to monitor the filesystem
on such machines infected by state of the art ransomware
samples.

Proposed Approach. Our preliminary assessment guided
us to design a detection system based on the combined
analysis of entropy of write operations, frequency of read,
write, and folder-listing operations, dispersion of per-file
writes, fraction of files renamed, and the file-type usage
statistics. Our approach is to automatically create detection
models that distinguish ransomware from benign processes
at runtime ShieldFS adapts these models to the filesystem
usage habits observed on the protected system. Additionally,
ShieldFS looks for indicators of the use of cryptographic
primitives. In particular, ShieldFS scans the memory of
any process considered as “potentially malicious,” searching
for traces of the typical block cipher key schedules.

A distinctive aspect of ShieldFS is how it copes with code
injection, a common technique used by modern ransomware
(as well as other malware). With code injection, a perfectly
legitimate process suddenly executes malicious code. Our
detection mechanism takes into account both the long- and
the short-term history of each process, and of the entire
system. Indeed, we are agnostic with respect to how the
infection has bootstrapped (e.g., malicious executable, remote
code execution) and on the availability of the executable.
Rather, we focus on the runtime effects on the target system.
In fact, as observed in [19], the activity of modern malware
can span across multiple process and OS facilities, and, more
importantly, an isolated sample to analyze is a luxury in early
stage of spreading campaigns. Therefore, detection systems
should not assume that a binary executable is available.

We apply our detection approach in a real-time, self-healing
virtual filesystem that shadows the write operations. Thus,
if a file is surreptitiously altered by one or more malicious
processes, the filesystem presents the original, mirrored copy
to the user space applications. This shadowing mechanism
is dynamically activated and deactivated depending on the
outcome of the aforementioned detection logic. Figure 1
depicts the logical activity of ShieldFS in comparison with
a traditional filesystem.

Experimental Results Summary. We evaluated ShieldFS
on 688 samples from 11 distinct families, showing that it
can successfully protect user data from real-world attacks
performed by recent, state-of-the-art malware families. The
system exhibited remarkable accuracy and generalization
capabilities even when evaluated via cross-validation on the
large dataset that we collected from the 11 real-world ma-
chines. Also, we installed ShieldFS on the personal machines
in use by 3 volunteers, on which it correctly identified ran-
somware processes, and successfully reverted their effects.

Figure 1: On the right ShieldFS shadowing a file offended
by ransomware malicious write (MW), in comparison to
standard filesystems (on the left).

The performance impact of our prototype implementation is
such that ShieldFS is applicable in real-world settings.

Summary of Original Contributions.

• We performed the first, large-scale data collection of
I/O request packets generated by benign applications in
real-world conditions. Our dataset contains about 1.7
billion IRPs produced by 2,245 different applications.

• We propose a ransomware-detection approach that en-
ables a modern operating system to recognizing the
typical signs of ransomware behaviors.

• We propose an approach that makes a modern filesys-
tem resilient to malicious encryption, by dynamically
reverting the effects of ransomware attacks.

• We implemented these approaches as a drop-in, Win-
dows kernel module that we showed capable of success-
fully protecting from current ransomware attacks.

In the spirit of open science, we release our datasets and the
source code of ShieldFS at http://shieldfs.necst.it.

2 LOW-LEVEL I/O DATA COLLECTION
To understand how ransomware typically interact with the
filesystem in comparison to benign applications, the main
challenge is to be able to observe them in their usual working
conditions (e.g., on a victim’s machine). Since there is no
such recent data for this purpose, we collected it from real,
operational desktop computers for several weeks. First, this
provided us with a real-world reference “picture” of how files
and folders are organized in a typical computer, which is
useful to reproduce an environment that triggers the ran-
somware activity. Secondly, this approach provided us with
a large dataset of filesystem access patterns originating from
benign applications while exercised by real-user interactions.
This is essential to verify whether ransomware and benign
applications interact with the filesystem in a significantly
different way that could be leveraged for detection.

To carry out our analysis, we developed IRPLogger, a low-
level I/O filesystem sniffer, which we installed on real-world
machines in use by 11 volunteers. We can categorize the
participants as “home,” “developer,” or “office” users. As
summarized in Table 1, we collected 28.2 GB of compressed
and anonymized data, corresponding to 1,763 million IRPs.

2.1 Filesystem Sniffer Details
At the first boot, IRPLogger traverses the directory tree
of each mounted drive to collect metadata including total
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number of files, number of files per extension, and direc-
tory depth. The core of IRPLogger is a minifilter driver [5]
that intercepts the I/O requests generated for each filesys-
tem primitive invoked by userland code (e.g., CreateFile,
WriteFile, ReadFile). IRPLogger enriches the raw IRPs
with data including timestamp, writes entropy, and PID. An
example log entry (before anonymization) is as follows (a
longer version is in Appendix A):

<time, program name, PID, IRP op, entropy,file info>

When run on the participants’ machines, IRPLogger mini-
mizes and hashes any privacy-sensitive data such as the file
names and paths. We keep the extension of the accessed files
in clear, as this detail is needed for computing per-type file
statistics and features. Before collection, the logs are split
into sessions and compressed for space efficiency.

2.2 Ransomware Activity Data Collection
We leveraged IRPLogger also to collect ransomware activity
data. During December 2015 we used the VirusTotal Intelli-
gence API to obtain the most recent Windows executables
consistently labeled with the main ransomware families (i.e.,
CryptoWall, TeslaCrypt, Critroni, CryptoDefense, Crowti).
We manually ran each sample to ensure that it was fully and
properly working (e.g., some samples did not receive instruc-
tions and public encryption keys from the attacker’s control
servers), so obtaining the 383 active ransomware samples
summarized in Table 2.

Then, we prepared a set of virtual machines on which we ac-
tivated IRPLogger running on top of Windows 7 (64-bit). We
installed common utilities such as Adobe Reader, Microsoft
Office, alternative Web browsers, and media players. To
create a legitimate-looking system, we included typical user
data such as saved credentials, browser history, and realistic
decoy files (e.g., images, documents), such that to trigger the
samples. We used real files—collected by randomly crawling
web search-engines results—reflecting file-type and directory
tree distribution of the aforementioned 11 clean machines.
At runtime, our analysis environment emulates basic user
activity (e.g., moving the mouse, launching applications).
Following the best practices for malware experiments sug-
gested by [12], (1) we let the malware executables run for 90
minutes, (2) we allowed the samples to communicate with
their control servers, and (3) denied any potentially harmful
traffic (e.g., spam) during the experiments. For the sake
of scientific repeatability, we are open to provide access to
(or the implementation details of) our analysis environment.
After each execution, we saved the IRP logs and rolled back
each virtual machine to a clean snapshot.

Table 1: Statistics of the collected low-level I/O data
from 11 real-world machines during normal usage.

User Win. Usage Data #IRPs #Procs Apps Period Data Rate
ver. [GB] Mln. Mln. [hrs] [MB/min]

1 10 dev 3.4 230.8 16.60 317 34 7.85
2 8.1 home 2.4 132.1 9.67 132 87 2.04
3 10 office 0.9 54.2 5.56 225 17 0.83
4 7 home 4.7 279.9 18.70 255 122 5.18
5 7 home 2.2 138.1 5.04 141 47 4.10
6 10 dev 1.8 100.4 10.30 225 35 2.42
7 8.1 dev 0.8 49.0 3.28 166 8 5.62
8 8.1 home 0.8 43.9 6.33 148 32 2.16
9 8.1 home 7.7 501.8 24.20 314 215 3.21

10 7 home 0.9 57.6 2.63 151 18 4.60
11 7 office 2.6 175.2 4.69 171 28 8.51

Total 28.2 1,763.0 107.00 2245 643 -

2.3 Filesystem Activity Comparison
The remarkable differences in the features distribution shown
in Table 3 confirms ransomware and benign applications are
different filesystem-wise, and motivates us to exploit these
results to create a full-fledged remediation system.
We focus our analysis on user data, that is, the main

target of ransomware attacks. Contrarily, benign programs,
especially system processes (e.g., services, updates manager),
access large portions of files in dedicated folders, or in the
system folders. For this reason, we separate the IRP logs of
user folders from the IRPs of system folders. In practice, we
compute the features listed in Table 3 twice: first on IRP
logs of user paths only (e.g., excluding WINDOWS or Program
Files), and then on all paths.

3 APPROACH AND METHODOLOGY
For clarity, we logically divide our approach into two parts:
ransomware activity detection and file recovery. Our file-
recovery approach is inspired by copy-on-write filesystems
and consists in automatically shadowing a file whenever the
original one is modified, as depicted in Figure 1. Benign
modifications are then asynchronously cleared for space ef-
ficiency, and the net effect is that the user never sees the
effects of a malicious file encryption.

We consider all files as“decoys,” that is, we assume that the
malware will reveal its behavior because, indeed, it cannot
avoid to access the files that it must encrypts to fulfill its
goal. The features defined in Table 3 summarize the I/O-level
activity recorded on these decoys into quantitative indicators
of compromise. Thus, the detection and file-recovery parts
of our approach are tightly coupled, in the sense that we rely
on such decoys to both (1) collect data for detection, and (2)
manage the shadowing of the original files.

3.1 Ransomware FS Activity Detection
Given the results of our preliminary data analysis in Sec-
tion 2.3, and the aforementioned assumptions and design
decisions, we approach the detection problem as a supervised
classification task. Specifically, we propose a custom classifier
trained on the filesystem activity features defined in Table 3,
extracted from a large corpus of IRP logs obtained from
clean and infected machines. Once trained, this classifier is
leveraged at runtime to decide whether the features extracted
from a live system fit the learned feature distributions (i.e.,
no signs of malicious activity) or not.

Process- and System-centric FS Models. A malware
can perform all its malicious actions on a single process, or
split it across multiple processes (for higher efficiency and
lower accountability). For this reason, our custom classifier
adopts several models. One set of models, called process

Table 2: Statistics of the collected low-level I/O data
from 383 ransomware samples.

Ransomware Family No. Samples Data #IRPs
Millions

CryptoWall 157 (41.0%) 8.0 286.7
Crowti 125 (32.6%) 5.7 173.1
CryptoDefense 77 (20.1%) 4.5 171.6
Critroni 14 (3.7%) 0.6 3.0
TeslaCrypt 10 (2.6%) 0.9 29.2

Total 383 19.7 663.6
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Table 3: We use these features for both our preliminary assessment (Section 2) and as the building block of the
ShieldFS detector (Sections 3 4). ShieldFS computes each feature multiple times while monitoring each process, on
various portions of filesystem activity, as explained in details in Section 3.1. We normalize the feature values according
to statistics of the file system (e.g., total number of files, total number of folders). This normalization is useful to
adapt ShieldFS to different scenarios and usage habits. The rightmost column shows a comparison of benign ( ) vs.
ransomware ( ) programs by means of the empirical cumulative distribution, calculated on the datasets summarized
in Table 1 and 2, respectively. We notice that ransomware activity is significantly different than that of benign programs
according to our features, suggesting that there is sufficient statistical power to tell the two types of programs apart.

Feature Description Rationale Comparison

#Folder-
listing

Number of folder-listing operations nor-
malized by the total number of folders in
the system.

Ransomware programs greedily traverse the filesystem
looking for target files. Although filesystem scanners
may exhibit this behavior, we recall that ransomware
programs will likely violate multiple of these features
in order to work efficiently.

0 0.20.40.60.8 1

0

0.2

0.4

0.6

0.8

1

#Files-
Read

Number of files read, normalized by the
total number of files.

Ransomware processes must read all files before en-
crypting them.

0 0.20.40.60.8 1
0

0.2

0.4

0.6

0.8

1

#Files-
Written

Number of files written, normalized by
the total number of files in the system.

Ransomware programs typically execute more writes
than benign programs do under the same working
conditions.

0 0.20.40.60.8 1
0

0.2

0.4

0.6

0.8

1

#Files-
Renamed

Number of files renamed or moved, nor-
malized by the total number of files in the
system.

Ransomware programs often rename files appending
a random extension during encryption.

0 0.20.40.60.8 1

0

0.2

0.4

0.6

0.8

1

File type
coverage

Total number of files accessed, normalized
by the total number of files having the
same extensions.

Ransomware targets a specific set of extensions and
strives to access all files with those extensions. Instead,
benign application typically access a fraction of the
extensions in a given time interval.

0 0.20.40.60.8 1

0

0.2

0.4

0.6

0.8

1

Write-
Entropy

Average entropy of file-write operations. Encryption generates high entropy data. Although
file compressors are also characterized by high-entropy
write-operations, we show that the combined use of all
these features will mitigate such false positives. More-
over, we notice that our dataset of benign applications
contains instances of file-compression utilities.

0 0.20.40.60.8 1

0

0.2

0.4

0.6

0.8

1

centric, each trained on the processes individually. A second
model, called system centric, trained by considering all the
IRP logs as coming from a single, large “process” (i.e., the
whole system). The rationale is that the system-centric
model has a good recall for multi-process malware, but has
potentially more false positives. For this reason, the system-
centric model is used only in combination to the process-
centric model.

Incremental, Multi-tier Classification. Although our
file-recovery mechanism is conservative, we want to minimize
the time to decision. Moreover, since the decision can change
over time, all processes must be frequently and efficiently
monitored. To obtain an acceptable trade off between speed
and classification errors we adopt two orthogonal approaches.
First, (1) instead of running our classifiers on the entire

available process data, we split the data in intervals, or ticks.
Ticks are defined by the fraction of files accessed by the
monitored process—with respect to the total number of files

in the system. In this way, we obtain an array of incremental,
“specialized”classifiers, each one trained on increasingly larger
data intervals. For instance, when a process has accessed 2%
of the files, we query the “2%-classifier” only, and so on. Our
experiments (Figure 5) show that this technique reduces the
#IRPs required to cast a correct detection by three orders
of magnitude, with a negligible impact on the accuracy.

Secondly, (2) to account for changes during a process’
lifetime, we monitor both the long- and short-term history.
In practice, we organize the aforementioned incremental
classifiers in a multi-tier, hierarchical structure (as depicted
in Figure 2), with each tier observing larger spans of data.
At each tick, each tier analyzes the data up to N ticks in the
past, where N depends on the tier level. We label a process
as “ransomware” as soon as at least one of tiers agrees on
the same outcome for K consecutive ticks. In Section 5 we
show that the choice of K has negligible impact on the false
positives.
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Figure 2: Example of the use of incremental models.
At each interval, we check simultaneously multiple in-
cremental models at all applicable tiers.

Example (Code Injection). This example explains how
our incremental, multi-tier models handle a typical case. A
benign process (e.g., Explorer) is running, and has accessed
some files. For the first i ticks ShieldFS will classify it as
benign. Now, the Ransomware process injects its code into
Explorer’s code region. Referring to Figure 2, if Ransomware
does code injection after the 3rd tick, the global-tier model
classifies Explorer as benign, because the long-term feature
values are not be affected significantly by the small, recent
changes in the filesystem activity of Explorer. Instead, the
tier-1 model identifies Explorer as malicious, because the tier-
1 features are based only on the most recent IRPs (i.e., those
occurring right after the code injection). The same applies
for tier-2 models after the 4th tick, and so on. If K = 3,
for instance, and all the triggered tiers agree on a positive
detection, the Explorer process is classified as malicious at
this point in time. This decision, clearly, can change while
more process history is examined.

3.2 Cryptographic Primitives Detection
Detecting traces of a cipher within a suspicious process mem-
ory, in addition to malicious filesystem activity, is a further
indication of its ransomware nature. The malware authors’
goal is to efficiently encrypt large sets of files, using a single
master key per victim. Thus, instead of relying directly on
asymmetric cryptography, which is resource intensive, the
strategy is to encrypt each file with a symmetric cipher and
a per-file random key, each encrypted with an asymmetric
master secret obtained from the attacker’s control server.

Efficient Block Ciphers. The most widespread, efficient
symmetric-encryption algorithms of choice are fast block
ciphers. These ciphers combine the plaintext with a secret
key through a sequence of iterations, known as rounds. In
particular, the key is expanded in a sequence of values, known
as the key schedule, which is employed to provide enough key
material for the combination during all the rounds. Since
the key expansion is deterministic and depends on the key
alone, it can be pre-computed and reused, with a significant
performance gain (e.g., 2 to 4× in case of AES-128). Indeed,
all the mainstream cryptographic libraries (e.g., OpenSSL,
mBED TLS) and the vast majority of ransomware families
do pre-compute the key schedule.

Side Effects. The main side effect of such a pre-computation
technique is that the entire key schedule is (and must remain)
materialized in memory during all the encryption procedure.
We leverage this side effect, and perform a scan of the memory
of the running process, checking, at every offset, whether
the content of the memory can be obtained as a result of
a key schedule computation. Due to the tight constraints
present between the key and the expanded key (i.e., sound key
schedules impose a bijection between them) it is extremely
unlikely that a random sequence of bytes accidentally matches
the result of a key expansion, making false positives very
unlikely. False negatives may occur if the key schedule is not

contiguously stored in memory. However, due to the small
size of the involved data (i.e., less than a single 4kiB page),
such an event is unlikely to happen due to memory allocation
fragmentation.

Note. Although this technique has the benefit of recovering
the secret keys used during the encryption, relying exclusively
on this criterion for file recovery would not be generic and
future-proof: Since each file may be encrypted with a dedi-
cated symmetric key, to guarantee the recoverability of all
files, the memory scanning action should be continuous, and
there is the risk that some keys are simply missed. Instead,
by using our dual approach (i.e., filesystem and memory
analysis) ShieldFS can guarantee the recoverability of all
files, regardless of how they are encrypted.

3.3 Automatic File Recovery Workflow
When ShieldFS is active, any newly created process enters
a so-called “unknown” state. Whenever such a process opens
a file handle in write or delete mode for the first time (only),
ShieldFS copies the file content in a trusted, read-only
storage area. This storage can be on the main drive or on
a secondary drive. In either case, ShieldFS denies access
to this area from any userland process by discarding any
modification request coming from the upper I/O manager.
From this moment on, the process may read or write such
file, while ShieldFS monitors its activity. When ShieldFS
has collected enough IRPs, the process goes into a “benign,”
“suspicious,” or “malicious” state.

File copies belonging to “benign” processes can be deleted
immediately or, as ShieldFS does, scheduled for asynchronous
deletion. Since storage space is convenient nowadays, leaving
copies available for an arbitrarily long time delay does not
impose high costs. In turns, it greatly benefits the overall
system performance because, by acting as a cache, it limits
the number of copy operations required when the same files
are accessed (and would need to be copied) multiple times.

For any process that enters the“malicious” state for at least
one tick, ShieldFS checks the presence of ciphers within
the process. If any are found, it immediately suspends the
process and restores the offended files. Otherwise, it waits
until K positive ticks are reached before suspending the
process, regardless of whether a traces of ciphers are found.

Processes can enter a “suspicious” state when the process-
centric classifier is not able to cast a decision. In this case,
ShieldFS queries the system-centric model. If it gives a
positive outcome, then the process enters the “malicious”
state. Otherwise the process is classified as “benign.”

4 SHIELDFS SYSTEM DETAILS
We implemented ShieldFS following the high-level archi-
tecture depicted in Figure 3, and the detection loop defined
in Algorithm 1. We focused on Microsoft Windows because
it is the main target of the vast majority of ransomware
families. We argue that the technical implementation details
may change depending on the target filesystem and OS’s in-
ternals. However, our approach does not require any special
filesystem nor OS support. Thus, we expect that it could be
ported to other platforms with modest engineering work.

4.1 Ransomware FS Activity Detection
To intercept the IRPs, ShieldFS registers callback functions
through the filter manager APIs (i.e., FltRegisterFilter).
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Figure 3: High-level overview of ShieldFS. The Detector
and the Shielder are Windows minifilter drivers, and the
CryptoFinder is kernel driver.

For each IRP, the called function updates the feature val-
ues, using separate kernel worker threads for computation-
intensive functions (e.g., entropy calculation).

Feature Normalization. To keep the feature values nor-
malized (e.g., number of files read, normalized by the total
number of files), the first time the ShieldFS service is run,
it scans the filesystem to collect the file extensions, number
of files per extensions, and overall number of files.

Since the normalization factors change over time (i.e., new,
deleted, or renamed files), ShieldFS updates them in two
ways. One mechanism uses a dedicated kernel thread to
update the normalization factors in real time. This has no
performance impact, since ShieldFS already keeps track
of the relevant file operations. However, an attacker could
exploit it to bias the feature values, by manipulating the
normalization factors (e.g., by creating many legitimate, low-
entropy files). The second mechanism raises the bar for
the attacker because it updates the normalization factors
periodically (e.g., once a day). In this way, even if an attacker
tries to manipulate our normalization factors, she will need
to wait until the next update before starting to access files
without triggering any of the features. Although the second
mechanism is more resilient to such attacks, it is prone to
false positives if users create many files between updates.
False positives, however, occur only if a significant number
of files are accessed in a way that resembles a ransomware
activity (i.e., several folder-listing operations, followed by
file reads or renaming, and high-entropy writes). Taking our
dataset of benign machines monitored for about a month as
a reference, the impact of these false positives is very low
compared to the benefits of increased resiliency.

Classifier Details. Each classifier is implemented as a ran-
dom forest of 100 trees. Each tree outputs either −1 (benign)
or +1 (malicious). The overall outcome of each process-
centric classifier is the sum of its trees’ outcome, from −100
(highly benign) to 100 (highly malicious). In case of a tie (i.e.,
zero), ShieldFS marks the monitored process as “suspicious,”
and invokes the system-centric classifier to take the decision.
In case of a second tie, we conservatively consider the process
as malicious.

Monitoring Ticks. ShieldFS gives more relevance to small
variations in a feature value when a process has only accessed
a few files. At the same time it minimizes the total number of
models needed, so as to contain the performance impact. For
these reasons, the size of each tick grows exponentially with
the percentage of files accessed by a process. After careful
evaluation, we used 28 tiers, for intervals ranging from 0.1
to 100%, each one corresponding to a distinct model tier.
Adding other ticks beyond 28 would yield no improvements in
detection rates, and would instead penalize the performance.

Countermeasure for Buffer-file Abuse. Some versions
of Critroni exploit one single file as a write-and-encrypt-
buffer. Specifically, the malware moves the target original
file in a temporary file, encrypts it, and then overwrites the
original file with it. As a result, ShieldFS observes many
renaming operations, followed by many read-write operations
on a single file, thus biasing the feature values.

To counteract this evasion technique, ShieldFS keeps track
of when a file is read (or written) right after being renamed
(or moved), such that to update the feature values taking
into account the net, end-to-end effect, as if the buffer file
was not used. This mechanism comes at no extra cost, since
ShieldFS already keeps track of file-renaming operations.

4.2 Cryptographic Primitives Detection
ShieldFS checks the memory of processes classified as “sus-
picious” or “malicious” for the presence of symmetric crypto-
graphic primitives. For the sake of clarity, we remark that
the output of CryptoFinder is used as an additional, non-
essential feature. Hence, ShieldFS is able to detect even
samples that do not show any encryption process, as long as
the filesystem activity models are sufficiently (i.e., at least
K positive ticks) triggered.
ShieldFS does not make any assumption on how the

cipher is implemented by the malware, save for the mate-
rialization of the key schedule. As a proof of concept, we
select AES as our target block cipher, due to its widespread
use. AES’s key schedule expands 128, 192 or 256 key bits
into 1408, 1664 or 1920 key schedule bits, respectively. As a
consequence, taking all the 264 possible positions in the ad-
dress space as candidates, and assuming that the accidental
occurrence of a key expansion for a location is independent
from it occurring for a different one, the probability of a false
positive is 2642−1408 = 2−1344 (in the most favorable case),
which is negligible for practical purposes.

CryptoFinder receives the PIDs of suspicious processes by
the Detector, through IOCTL. When triggered, CryptoFinder
attaches to a process and obtains the list of its memory pages.
Specifically, CryptoFinder looks only at the committed pages,
defined in Windows as the pages for which physical storage
has been allocated—either in memory or in the paging file on
disk. Then, CryptoFinder runs the key-schedule algorithm
on these memory regions and checks whether its expansion
occurs. For efficiency reasons, we stop the inspection of a
location as soon as there is a single byte mismatch.

4.3 Automatic File Recovery
We implemented Shielder as a Windows minifilter driver
that monitors file modifications by registering a callback
for those IRP_MJ_CREATE operations which security context
parameter Parameters.Create.SecurityContext indicates
a “write” or “delete” I/O request. If the target file is not shad-
owed yet, ShieldFS creates a copy before letting the request
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Algorithm 1 Detection routine for each process.

1: procedure isRansomware(PID, fs features)
2: crypto← ⊥
3: for tier ∈ {1, ..., top} do
4: if enoughFilesAccessedForT ickOf(tier) then
5: result← ProcessClassifiertier(fs features)
6: resetFeatureV alues(tier)
7: if result < 0 then
8: Ktier ← 0
9: else
10: crypto← CryptoFinder(PID)
11: if result = 0 then
12: if SystemClassifiertier(fs features) ≥ 0 then
13: Ktier + +
14: else
15: Ktier + +
16: if crypto ∨ ∃tier : Ktier ≥ Kthreshold then
17:
18: return malicious
19:
20: return benign

through. With the same technique it monitors the destina-
tion of (potentially malicious) file-renaming operations, by
hooking the IRP_MJ_SET_INFORMATION requests having the
ReplaceIfExists flag set. File handing and indexing in the
shadow drive is based on the FILE_ID identifier assigned by
NTFS to each file.

Transaction Log. ShieldFS maintains a transaction log
of the relevant IRPs (e.g., those resulting from file mod-
ifications). Whenever a process is classified as malicious,
ShieldFS inspects such log and restores each file affected by
the offending process.

File copies are deleted only when the processes that modi-
fied the original file have been cleared as “benign.” ShieldFS
treats the shadow drive as a cache: It avoids shadowing the
same file if a fresh copy (i.e., not older than T hours) already
exists. According to our experiments, based on the work-
load of real-world users (obtained form our large-scale data
collection), the age T imposes acceptable overhead (below
1%) and can be safely set to any number between 1 and 4.
In Section 6 we discuss how the choice of T raises the bar
for the attacker who wants to successfully encrypt a large
portion of files.

Whitelisting of Support Files. Files that have no value
for a user are of no interest for ransomware attacks. An
example are application-support directories, which contain
cache or temporary files, which are frequently accessed by
benign applications. These folders can be safely whitelisted
to reduce the performance overhead due to the frequent
operations on such files. To avoid that an attacker could
exploit the whitelisted folders as a “demilitarized zone”where
to copy the target files (prior to encrypting them), we adopt
the following solution. Any process that has never accessed
a whitelisted folder is considered “suspicious” as soon as it
attempts to move files into it. The files offended by this
operation are preemptively shadowed.

Windows Shadow Copy. Recent Windows versions have a
so-called Volume Shadow Copy Service. However, Windows
shadow copies have two issues. First, the copies are created
only during the next power down and boot cycle. Instead,
as we already mentioned, our approach is designed for short-
term backup that can allows users to restore recently modified
files. Secondly, shadow copies can be easily bypassed and
deleted, as most of recent ransomware families do before
starting the encryption process [8].

5 EXPERIMENTAL RESULTS
As we did for our preliminary analysis (Section 2.2), we
evaluated ShieldFS on an analysis environment with virtual
machines provisioned so as to mimic the file content and
organization of potential victim machines.
We first performed a thorough cross validation to assess

(1) the generalization capabilities of our classifiers, and (2)
the impact of the parameter choice on the overall detection
quality and performance. Second, we infected physical ma-
chines in use by real users (for their day-to-day activities)
with 3 samples of ransomware families. ShieldFS was able
to detect their activity and fully recover all the compromised
files. Third, we evaluated the detection and file-recovery
capabilities against ransomware samples that ShieldFS has
never seen before. Last, we measured the performance over-
head of ShieldFS by considering the typical usage workload,
where “typical” refers to our initial large-scale collection of
I/O filesystem logs.

A video demo of ShieldFS in action is available on YouTube
at [17].

5.1 Detection Accuracy
Cross validation allows to reveal the presence of overfitting-
induced biases and thus is a crucial aspect of any machine-
learning-based approach. We conducted three cross-validation
experiments to evaluate the quality of the Detector on our
dataset of 383 ransomware samples and 2,245 benign appli-
cations from the 11 user machines. We count positive or
negative detections at the process granularity, and calcu-
late the TPR and FPR based on the true overall number of
benign and ransomware processes.

10-fold Cross Validation. We calculated the true- and
false-positive rate on 10 random train/test splits. Figure 4
and 5 show the TPR and FPR in function of the minimum
percentage of files, and #IRPs, respectively, needed to cast
the decision. The results show the benefit of the system-
centric model as a tie breaker, and the incremental approach
as an early detector, which requires orders of magnitude less
IRPs to cast a decision, with almost no impact on the FPR
(i.e., from 0.0 to 0.00015 in the worst case).

One-machine-off Cross Validation. To further show the
independence of our detection results from the specific ma-
chine that generates the benign subset of training and testing
data, we performed a per-machine cross validation. We selec-
tively removed the data of one machine from the training set,
and used it as the testing set. We repeated this procedure
for each of the 11 machines.

Table 4 shows (1) that ShieldFS has no strong dependency
from the training-testing data split, and (2) confirms that
the system-centric model is useful to reduce FPs by acting
as a tie breaker.

Causes of False Positives. We found only two cases of
false positives. For the first user machine, the detector
triggered because explorer.exe biased the normalization,
by accessing a very large number of files (more than the
normalization factors, which were not up to date). This
motivated us to implement the mechanism that live-updates
the system-wide, feature counts for normalization (rather
than doing such an update periodically). This eliminates the
false positives, creating however a small opportunity for the
attacker to bias the normalization factors. This trade off is
clearly inherent in the statistical nature of ShieldFS.
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Figure 4: 10-fold Cross Validation: Average and stan-
dard deviation of TPR and FPR with process- vs.
system-centric detectors.

Interestingly, in 4 out of 11 machines we found activity of
the WinRar file-compression utility, which performed high-
entropy writes. Nevertheless, WinRar was correctly classified
as benign, thanks to the contribution of the remainder fea-
tures.

The second false positive was Visual Studio, which wrote
175 files, with a very high average entropy (0.948). This
was an isolated case, which happened only on one of the 32
Visual Studio session recorded in our dataset.

Parameter Setting. The choice of K, the number of con-
secutive positive detections required to consider a process as
malicious, can be set to minimize the FPR to zero, at the
price of a very small variation (within +/-0.5%) of TPR. Or
vice versa. Table 5 shows that setting K = 3 maximizes the
TPR, with very few false positives. Instead, with K = 6,
ShieldFS did not identified a sample that performed in-
jection into a benign process and that encrypted files very
slowly. Generally, false negatives are more expensive than
false positives in ransomware-detection problems, thus we
advise for values of K that maximize the TPR. This has the
additional benefit of reducing the number of IRPs required
for a correct detection.

5.2 Protection of Production Machines.
In order to evaluate our system in real scenarios, we tested
ShieldFS on three distinct real machines (running Windows
7 and 10), in use by real users for their day-to-day activities
for years, containing 2,319, 165,683, and 144,868 files, respec-
tively. We randomly selected 3 samples1 from our dataset
(Critroni, TeslaCrypt, and ZeroLocker) and manually ana-
lyzed them to ensure that they were not stealing any personal

1
e89f09fdded777ceba6412d55ce9d3bc, 209a288c68207d57e0ce6e60ebf60729,

bd0a3c308a6d3372817a474b7c653097

Table 4: FPR with One-machine-off Cross Validation

User False positive rate [%]

Machine Process System Outcome

1 0.53 23.26 0.27
2 0.00 0.00 0.00
3 0.00 0.00 0.00
4 0.00 1.20 0.00
5 0.22 45.45 0.15
6 0.00 4.76 0.00
7 0.00 88.89 0.00
8 0.00 0.00 0.00
9 0.00 0.00 0.00

10 0.00 0.00 0.00
11 0.00 0.00 0.00
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Figure 5: 10-fold Cross Validation: TPR of process- and
system-centric detectors, with and without the incremen-
tal, multi-tier approach. FPR ranges from 0.0 to 0.0015.

information. After cloning the hard drives as a precaution,
we installed ShieldFS, and infected the machines. All the
three samples were correctly detected and all the affected
files were correctly restored automatically.

5.3 Detection and Recovery Capabilities
We setup an environment as described in Section 2.2, with
dummy files to reproduce a real-user setting. Moreover, we
stored 9,731 files typically targeted by ransomware attacks
(e.g., images and documents of various formats), of which we
pre-calculated the MD5 for integrity verification after each
experiment. We then trained ShieldFS on the large dataset
of IRP logs collected as part of our preliminary analysis.

Dataset of Unseen Samples. In addition to the cross-
validation experiments on 383 samples, which already show
the predictive and genralization capabilities of ShieldFS,
we obtained 305 novel, working ransomware samples and
let them run for 60 minutes on the machines protected by
ShieldFS. This dataset (Table 6) is completely disjoint from
the training dataset and was collected from VirusTotal as
of May 2016. Interestingly, seven families (Locky, Cryp-
toLocker, TorrentLocker, DirtyDecrypt, PayCrypt, Troldesh,
ZeroLocker) are not present in the training dataset.

Detection of Unseen Samples. ShieldFS prevented mali-
cious encryption in 100% of the cases, by restoring the 97,256
compromised files, and correctly detected 298 (97.70%) of
the samples without any false positive. The top-tier, process-
centric model contributed to detecting 95.2% of the samples,
the incremental models were effective mainly in the case of
ransomware performing code injections (4.3%), as expected.
In one case, the incremental process-centric models identified
the malicious process as suspicious and ShieldFS invoked the
system-centric model to take a final decision. CryptoFinder
contributed to the detection of 69.3% of the samples.

Causes of False Negatives. Seven samples remained in-
active for most of our analysis and encrypted just few files
(less than 30). Fortunately, thanks to our conservative file-

Table 5: 10-fold Cross-Validation: Choice of K.

K FPR TPR IRPs

1 0.208% 100% 35664
2 0.076% 100% 43822
3 0.038% 100% 67394

4 0.019% 99.74% 80782
5 0.019% 99.74% 104340
6 0.000% 99.74% 135324
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Figure 6: Micro Benchmark: Average overhead.

shadowing strategy, ShieldFS had copied the original files,
allowing their recovery. We investigated the cause of false
negatives in the detection of cryptographic primitives and
we found no evidence showing that the remaining samples
were using AES. Therefore, we conclude that CryptoFinder’s
detection capability of AES key schedule is 100%.

5.4 System Overhead
We evaluated the performance overhead and additional stor-
age space requirements of ShieldFS.

User-Perceived Overhead. Our goal is to quantify, with
good approximation, how much would ShieldFS slow down
the typical user’s tasks, on average. To this end, we dis-
tributed to 5 users a new version of IRPLogger that collected
file-size information in addition to the usual IRP logs. Then,
we reconstructed 6 hours worth of sequences of high-level
system calls by analyzing about one month of low-level IRPs.
For example, one IRP_MJ_CREATE followed by one or more
IRP_MJ_READ corresponds to a FileRead call, and so on, by
abstraction. Then, we estimated the perceived overhead for
a user-level task as the average overhead due to all the filesys-
tem calls executed during such task, taking into account the
size of the affected files. We fixed 10 minutes as the duration
of a user-level task, that is, while the user is interacting
with the computer uninterruptedly. Figure 7 shows that
the average estimated overhead is 0.26×. Indeed, we barely
perceived it while using a machine protected by ShieldFS.

Table 6: Dataset of 305 unseen samples of 11 different
ransomware families.

Ransomware No. Detection
Family Samples Rate

Locky 154 (50.5%) 150/154
TeslaCrypt 73 (23.9%) 72/73
CryptoLocker 20 (6.6%) 20/20
Critroni 17 (5.6%) 17/17
TorrentLocker 12 (3.9%) 12/12
CryptoWall 8 (2.6%) 8/8
Troldesh 8 (2.6%) 7/8
CryptoDefense 6 (2.0%) 5/6
PayCrypt 3 (1.0%) 3/3
DirtyDecrypt 3 (1.0%) 3/3
ZeroLocker 1 (0.3%) 1/1

Total 305 298/305
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Figure 7: Average (and standard deviation) perceived
overhead introduced by ShieldFS on 5 real-users ma-
chines.

Runtime Overhead: Micro Benchmarks. We also eval-
uated the in-the-small performance impact of ShieldFS. We
considered three sequences of filesystem operations on a se-
ries of 1,800 files of 18 varying sizes (from 1 KB to 128 MB):
(1) open and read the files, (2) open and write them when
they are not backed up already, and (3) open and write them
when they are already backed up. We run each sequence 100
times on a Windows 10 machine equipped with a rotational
hard disk drive, with and without ShieldFS, rebooting the
machine after each test to avoid caching side effects. Figure 6
shows the overhead of each sequence. The overhead is higher
(1.8–3.8×) when files need to be backed up, and remarkably
lower (0.3–0.9×) when files are already backed up.

Storage Space Requirements. During our experiments
we kept track of the storage space required by ShieldFS
to keep secure copies. Table 7 shows that with T = 3h, in
the worst case (i.e., all files need to be backed up within T ),
ShieldFS requires 14.73 GB of additional storage space (i.e.,
$44.2¢).
Parameter Setting. The T parameter determines how of-
ten ShieldFS creates copies of the files that require to be
shadowed. Table 8 shows the average overhead and storage
space required for T ∈ [1, 4] hour(s) measured during our
experiments. We can conclude that T does not significantly
influence the overall performance overhead. Thus, as further
discussed in Section 6, we advise to set it as high as to match
the on-premise, long-term backup schedule.

6 DISCUSSION OF LIMITATIONS
From the results of our experiments we discuss the following
list of limitations, in decreasing order of importance.

Susceptibility to Targeted Evasion. Ticks are essentially
the “clock” of ShieldFS. At each tick, a decision is made.
Since ticks are not based on time, but on the percentage of
files accessed, an adversary may be interested in preventing
to trigger the ticks, so to avoid detection. However, the only
way to do it is to access zero or very few files, which is clearly
against the attacker’s goal. Alternatively, in order not to
cause a significant change in the feature values after code
injection, an adversary may try to find an existing, benign

Table 7: Measured storage space requirements on real-
users machines (T = 3h) and cost estimation considering
$3¢/GB.

User Period Storage Required Storage Overhead Max Cost
[hrs] Max [GB] Avg. [GB] Max [%] Avg [%] [USD]

1 34 14.73 0.63 4.29 0.18 44.2¢
2 87 0.62 0.19 0.95 0.29 1.86¢
4 122 9.11 0.73 8.53 0.68 27.3¢
5 47 2.41 0.56 5.49 1.29 7.23¢
7 8 1.00 0.39 3.35 1.28 3.00¢
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host process that has already accessed about as many files as
the attacker wants to encrypt. This is very unlikely because,
by design, such process can exist only if it has not already
triggered the detection (otherwise ShieldFS would have
already killed it already). That is, only if it has accessed a
large number of files without violating the other features (e.g.,
mainly read operations, low entropy files). Assuming that the
malware can find such a benign process to inject its malicious
code, the process’ features will start to change as soon as the
malicious code will start encrypting the aforementioned files.
At some point, the malicious code cannot avoid performing
many write operations of high-entropy content.
If the malware knows precisely the thresholds of the clas-

sifiers and value of the parameter T , it could attempt to
perform a mimicry attack [18] encrypting few files so as to
remain below the thresholds until T hours. In this way, it will
be identified as benign and the victim will loose the original
copies. However to remain unaccountable, a ransomware
cannot encrypt all the files in one round, so it would need
to repeat this procedure every T hours. Setting T to large
values will raise the bar, by forcing the attacker to wait for
long. On the other hand, setting T very low guarantees
that the recent (benign) modifications are accounted in the
secondary drive. In this way, if a restore is needed, a very
recent (up to T ) copy is available. In other words, T allows
to trade off mimicry resilience versus data freshness.

Multiprocess Malware. Ransomware injecting malicious
code into many benign processes, each of them performing
a small part of the malicious activity, could evade our de-
tector if the attacker knows the feature values—which, is
challenging for a userland malware. Multiprocess malware
is partially mitigated by the combination of system-centric
models with the incremental, multi-tier strategy. Neverthe-
less, ransomware could perform encryption very slowly. This
however, is against the attackers’ goal, who wants to encrypt
all files before users can notice any change. Last, even if a
malicious process is not detected, thanks to our conservative
file-shadowing approach, a user noticing the encrypted files
can manually restore the original files from the copies.

Cryptography Primitives Detection Evasion. A pos-
sible cause of false negatives of our approach is the use
of dedicated ISA extensions of modern CPUs (e.g., Intel
AES-NI [4]) to perform the encryption off memory, using a
dedicated register file. However, in such case the malware
binary code would contain those specific instructions, not
to mention that the malware will work only if the victim
machine supports the Intel AES-NI extensions.

The current proof-of-concept implementation of ShieldFS
supports only the detection of AES. Supporting other ciphers
is an implementation effort, as our approach is valid for the
majority of symmetric block ciphers.

Tampering with the Kernel. ShieldFS runs in a privi-
leged kernel mode. We implemented ShieldFS to be “non
unloadable”at runtime, even by administrator users. Further-
more, ShieldFS is able to deny any operation that attempts

Table 8: Influence of T on runtime and storage overhead.

T Runtime Overhead Storage Space Overhead

[hrs] Avg [×] Std.dev [×] Max [GB] Avg [GB] Max [%] Avg [%]

1 0.263 0.0404 5.4838 0.4040 4.353 0.586
2 0.262 0.0404 5.8402 0.4875 4.762 0.720
3 0.261 0.0403 5.5768 0.4994 4.522 0.746
4 0.260 0.0403 5.5927 0.5150 4.545 0.766

to delete or modify the driver binaries. An administrator-
privileged process, however, could try to prevent ShieldFS
service from starting at boot, by modifying the Windows
registry, and force a reboot. This limitation can be mitigated
by embedding our approach directly in the kernel without
the need for a service. Doing so, the only chance to bypass
our system is to compromise the OS kernel.

Preventing Denial of Service. A malware could attempt
to compromise ShieldFS itself by filling up the shadow drive.
First, in this scenario it is likely that ShieldFS detects and
stops the malicious process before it fills the entire space.
Second, ShieldFSmakes the shadow drive read-only, denying
any modification request coming from userland processes.
Last, ShieldFS could monitor the shadow drive and alert
the user when it is running out of space.

7 RELATED WORKS

Kharraz et al. [7] studied the behavior of scareware and
ransomware, observing its evolution during the last years,
in terms of encryption mechanisms, filesystem interactions,
and financial incentives. They suggested some potential
defenses, but evaluating them was out of the scope of their
paper. Indeed, while [7] analyzed the filesystem activity of
ransomware, the authors (and any other work) did not focus
on analyzing the filesystem activity of benign applications,
which we found crucial to build a robust detector.

Concurrently and independently to our work, Kharraz
et al. [6] and Scaife et al. [14] published two ransomware
detection approaches, respectively UNVEIL and CryptoDrop.
Although they both look at the filesystem layer to spot
the typical ransomware activity, they do not provide any
recovery capability. Also, their approaches do not include
identification of cryptographic primitives. Differently from
our work, UNVEIL includes text analysis techniques to detect
ransomware threatening notes and screen lockers, along the
line of [1], and CryptoDrop uses similarity-preserving hash
functions to measure the dissimilarity between the original
and the encrypted content of each file. These two techniques
are complementary to ours, and can be added to ShieldFS
as additional detection features.

Andronio et al. [1] studied the ransomware phenomenon
on Android devices, proposing an approach, HelDroid, to
identify malicious apps. Besides the difference in the target
platform, HelDroid looks at how ransomware behaves at the
application layer, whereas we focus on its low-level behavior.
Thus, their approach is complementary to ours, also because
it is based on static analysis.

Our data-collection and mining phase is somehow akin to
what Lanzi et al. [9] did to perform a large-scale collection of
system calls, with the purpose of studying malware behavior
by means of the system and API call profiles. We focus on
IRPs instead as they better capture ransomware behavior.

Lestringant et al. [10] applied graph isomorphism tech-
niques to data-flow graphs in order to identify cryptographic
primitives in binary code. Although [10] works at binary
level, whereas ShieldFS identifies usage of cryptographic
primitives at runtime, it is a valid alternative that can be
used to complement our CryptoFinder.
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8 CONCLUSIONS
In this paper, we proposed an approach to make modern
operating systems more resilient to malicious encryption
attacks, by detecting ransomware-like behaviors and reverting
their effects safeguarding the integrity of users’ data.
We foresee ShieldFS as a countermeasure that keeps an

always-fresh, automatic backup of the files modified in the
short term. We argue that, although older files can be
asynchronously backed up with on-premise systems (because
they have less strict time constraints), recent files may be
of immense value for a user (e.g., time-sensitive content);
even the loss of a small update to an important file may end
up in the decision to pay the ransom, because the existing
backup is simply too old. With traditional backup solutions
alone there exist a trade off between performance, space
and “freshness,” not to mention that a ransomware may
encrypt the backups as well! Generally, traditional solutions
work well for incremental backups, long-term archives with
no real-time constraints. Pushing such backup solutions
to tighter time constraints while keeping reasonable system
performance may result in side effects. For instance, once a
file is encrypted by a ransomware, there exists a risk that it
may replace the plaintext backup. Instead, ShieldFS works
at a lower level. Thus, it is transparent to a ransomware that
works at the filesystem’s logical view. Therefore, it is best
suited for the protection of short-term file changes, leaving
traditional backups protecting from long-term file changes.

9 ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their valuable feed-
back. This work was supported in part by the MIUR FACE
Project No. RBFR13AJFT.

References
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APPENDIX

A Real Example of IRP Log (Critroni sample)

Timestamp PID Process Operation Entropy Name

13:09:47:452 3284 nokmhcu.exe IRP_MJ_CLEANUP 0 Users\John\AppData\Roaming\Microsoft\Windows\Cookies\Low\john@scorecardresearch[2].txt.ecc
13:09:47:512 3284 nokmhcu.exe IRP_MJ_CREATE 0 Users\John\AppData\Roaming\Microsoft\Windows\Cookies\Low\john@www.bing[2].txt
13:09:47:522 3284 nokmhcu.exe IRP_MJ_NETWORK_QUERY_OPEN 0 Users\John\AppData\Roaming\Microsoft\Windows\Cookies\Low\john@www.bing[2].txt
13:09:47:522 3284 nokmhcu.exe IRP_MJ_CREATE 0 Users\John\AppData\Roaming\Microsoft\Windows\Cookies\Low\john@www.bing[2].txt
13:09:47:522 3284 nokmhcu.exe IRP_MJ_QUERY_INFORMATION 0 Users\John\AppData\Roaming\Microsoft\Windows\Cookies\Low\john@www.bing[2].txt
13:09:47:522 3284 nokmhcu.exe IRP_MJ_CLEANUP 0 Users\John\AppData\Roaming\Microsoft\Windows\Cookies\Low\john@www.bing[2].txt
13:09:47:522 3284 nokmhcu.exe IRP_MJ_CLOSE 0 Users\John\AppData\Roaming\Microsoft\Windows\Cookies\Low\john@www.bing[2].txt
13:09:47:522 3284 nokmhcu.exe IRP_MJ_QUERY_INFORMATION 0 Users\John\AppData\Roaming\Microsoft\Windows\Cookies\Low\john@www.bing[2].txt
13:09:47:522 3284 nokmhcu.exe IRP_MJ_READ 0.578726245 Users\John\AppData\Roaming\Microsoft\Windows\Cookies\Low\john@www.bing[2].txt
13:09:47:522 3284 nokmhcu.exe IRP_MJ_READ 0.578726245 Users\John\AppData\Roaming\Microsoft\Windows\Cookies\Low\john@www.bing[2].txt
13:09:48:464 3284 nokmhcu.exe IRP_MJ_CREATE 0 Users\John\Documents\decoys\decoy_doc_1.doc
13:09:48:464 3284 nokmhcu.exe IRP_MJ_NETWORK_QUERY_OPEN 0 Users\John\Documents\decoys\decoy_doc_1.doc
13:09:48:464 3284 nokmhcu.exe IRP_MJ_CREATE 0 Users\John\Documents\decoys\decoy_doc_1.doc
13:09:48:464 3284 nokmhcu.exe IRP_MJ_QUERY_INFORMATION 0 Users\John\Documents\decoys\decoy_doc_1.doc
13:09:48:464 3284 nokmhcu.exe IRP_MJ_CLEANUP 0 Users\John\Documents\decoys\decoy_doc_1.doc
13:09:48:464 3284 nokmhcu.exe IRP_MJ_CLOSE 0 Users\John\Documents\decoys\decoy_doc_1.doc
13:09:48:464 3284 nokmhcu.exe IRP_MJ_QUERY_INFORMATION 0 Users\John\Documents\decoys\decoy_doc_1.doc
13:09:48:464 3284 nokmhcu.exe IRP_MJ_READ 0.6837495837 Users\John\Documents\decoys\decoy_doc_1.doc
13:09:48:464 3284 nokmhcu.exe IRP_MJ_READ 0.6837495837 Users\John\Documents\decoys\decoy_doc_1.doc
13:09:48:464 3284 nokmhcu.exe IRP_MJ_WRITE 0 Users\John\Documents\decoys\decoy_doc_1.doc
13:09:48:464 3284 nokmhcu.exe IRP_MJ_WRITE 0.5 Users\John\Documents\decoys\decoy_doc_1.doc
13:09:48:504 3284 nokmhcu.exe IRP_MJ_WRITE 0.1875 Users\John\Documents\decoys\decoy_doc_1.doc
13:09:48:504 3284 nokmhcu.exe IRP_MJ_WRITE 0 Users\John\Documents\decoys\decoy_doc_1.doc
13:09:48:504 3284 nokmhcu.exe IRP_MJ_WRITE 0.9952772455 Users\John\Documents\decoys\decoy_doc_1.doc
13:09:48:504 3284 nokmhcu.exe IRP_MJ_CLEANUP 0 Users\John\Documents\decoys\decoy_doc_1.doc
13:09:48:504 3284 nokmhcu.exe IRP_MJ_CREATE 0 Users\John\Documents\decoys\decoy_doc_1.doc
13:09:48:504 3284 nokmhcu.exe IRP_MJ_QUERY_INFORMATION 0 Users\John\Documents\decoys\decoy_doc_1.doc
13:09:48:504 3284 nokmhcu.exe IRP_MJ_QUERY_INFORMATION 0 Users\John\Documents\decoys\decoy_doc_1.doc
13:09:48:514 3284 nokmhcu.exe IRP_MJ_CREATE 0 Users\John\Documents\decoys
13:09:48:514 3284 nokmhcu.exe IRP_MJ_SET_INFORMATION 0 Users\John\Documents\decoys\decoy_doc_1.doc
13:09:48:514 3284 nokmhcu.exe IRP_MJ_CLEANUP 0 Users\John\Documents\decoys
13:09:48:514 3284 nokmhcu.exe IRP_MJ_CLOSE 0 Users\John\Documents\decoys
13:09:48:514 3284 nokmhcu.exe IRP_MJ_CLEANUP 0 Users\John\Documents\decoys\decoy_doc_1.doc.ecc
13:09:48:574 3284 nokmhcu.exe IRP_MJ_CREATE 0 Users\John\Documents\decoys\decoy_doc_10.doc
13:09:48:574 3284 nokmhcu.exe IRP_MJ_NETWORK_QUERY_OPEN 0 Users\John\Documents\decoys\decoy_doc_10.doc
13:09:48:574 3284 nokmhcu.exe IRP_MJ_CREATE 0 Users\John\Documents\decoys\decoy_doc_10.doc
13:09:48:574 3284 nokmhcu.exe IRP_MJ_QUERY_INFORMATION 0 Users\John\Documents\decoys\decoy_doc_10.doc
13:09:48:574 3284 nokmhcu.exe IRP_MJ_CLEANUP 0 Users\John\Documents\decoys\decoy_doc_10.doc
13:09:48:574 3284 nokmhcu.exe IRP_MJ_CLOSE 0 Users\John\Documents\decoys\decoy_doc_10.doc
13:09:48:574 3284 nokmhcu.exe IRP_MJ_QUERY_INFORMATION 0 Users\John\Documents\decoys\decoy_doc_10.doc
13:09:48:574 3284 nokmhcu.exe IRP_MJ_READ 0.5938475027 Users\John\Documents\decoys\decoy_doc_10.doc
13:09:48:574 3284 nokmhcu.exe IRP_MJ_READ 0.5938475027 Users\John\Documents\decoys\decoy_doc_10.doc
13:09:48:584 3284 nokmhcu.exe IRP_MJ_WRITE 0 Users\John\Documents\decoys\decoy_doc_10.doc
13:09:48:584 3284 nokmhcu.exe IRP_MJ_WRITE 0.5 Users\John\Documents\decoys\decoy_doc_10.doc
13:09:48:644 3284 nokmhcu.exe IRP_MJ_WRITE 0.1875 Users\John\Documents\decoys\decoy_doc_10.doc
13:09:48:644 3284 nokmhcu.exe IRP_MJ_WRITE 0 Users\John\Documents\decoys\decoy_doc_10.doc
13:09:48:644 3284 nokmhcu.exe IRP_MJ_WRITE 0.9885247795 Users\John\Documents\decoys\decoy_doc_10.doc
13:09:48:644 3284 nokmhcu.exe IRP_MJ_CLEANUP 0 Users\John\Documents\decoys\decoy_doc_10.doc
13:09:48:644 3284 nokmhcu.exe IRP_MJ_CREATE 0 Users\John\Documents\decoys\decoy_doc_10.doc
13:09:48:644 3284 nokmhcu.exe IRP_MJ_QUERY_INFORMATION 0 Users\John\Documents\decoys\decoy_doc_10.doc
13:09:48:644 3284 nokmhcu.exe IRP_MJ_QUERY_INFORMATION 0 Users\John\Documents\decoys\decoy_doc_10.doc
13:09:48:644 3284 nokmhcu.exe IRP_MJ_CREATE 0 Users\John\Documents\decoys
13:09:48:644 3284 nokmhcu.exe IRP_MJ_SET_INFORMATION 0 Users\John\Documents\decoys\decoy_doc_10.doc
13:09:48:644 3284 nokmhcu.exe IRP_MJ_CLEANUP 0 Users\John\Documents\decoys
13:09:48:644 3284 nokmhcu.exe IRP_MJ_CLOSE 0 Users\John\Documents\decoys
13:09:48:644 3284 nokmhcu.exe IRP_MJ_CLEANUP 0 Users\John\Documents\decoys\decoy_doc_10.doc.ecc
13:09:48:714 3284 nokmhcu.exe IRP_MJ_CREATE 0 Users\John\Documents\decoys\decoy_doc_11.doc
13:09:48:714 3284 nokmhcu.exe IRP_MJ_NETWORK_QUERY_OPEN 0 Users\John\Documents\decoys\decoy_doc_11.doc
13:09:48:714 3284 nokmhcu.exe IRP_MJ_CREATE 0 Users\John\Documents\decoys\decoy_doc_11.doc
13:09:48:714 3284 nokmhcu.exe IRP_MJ_QUERY_INFORMATION 0 Users\John\Documents\decoys\decoy_doc_11.doc
13:09:48:714 3284 nokmhcu.exe IRP_MJ_CLEANUP 0 Users\John\Documents\decoys\decoy_doc_11.doc
13:09:48:714 3284 nokmhcu.exe IRP_MJ_CLOSE 0 Users\John\Documents\decoys\decoy_doc_11.doc
13:09:48:714 3284 nokmhcu.exe IRP_MJ_QUERY_INFORMATION 0 Users\John\Documents\decoys\decoy_doc_11.doc
13:09:48:714 3284 nokmhcu.exe IRP_MJ_READ 0.6293847592 Users\John\Documents\decoys\decoy_doc_11.doc
13:09:48:714 3284 nokmhcu.exe IRP_MJ_READ 0.6293847592 Users\John\Documents\decoys\decoy_doc_11.doc
13:09:48:714 3284 nokmhcu.exe IRP_MJ_WRITE 0 Users\John\Documents\decoys\decoy_doc_11.doc
13:09:48:714 3284 nokmhcu.exe IRP_MJ_WRITE 0.484375 Users\John\Documents\decoys\decoy_doc_11.doc
13:09:48:774 3284 nokmhcu.exe IRP_MJ_WRITE 0.1875 Users\John\Documents\decoys\decoy_doc_11.doc
13:09:48:774 3284 nokmhcu.exe IRP_MJ_WRITE 0 Users\John\Documents\decoys\decoy_doc_11.doc
13:09:48:774 3284 nokmhcu.exe IRP_MJ_WRITE 0.9953397382 Users\John\Documents\decoys\decoy_doc_11.doc
13:09:48:774 3284 nokmhcu.exe IRP_MJ_CLEANUP 0 Users\John\Documents\decoys\decoy_doc_11.doc
13:09:48:774 3284 nokmhcu.exe IRP_MJ_CREATE 0 Users\John\Documents\decoys\decoy_doc_11.doc
13:09:48:774 3284 nokmhcu.exe IRP_MJ_QUERY_INFORMATION 0 Users\John\Documents\decoys\decoy_doc_11.doc
13:09:48:774 3284 nokmhcu.exe IRP_MJ_QUERY_INFORMATION 0 Users\John\Documents\decoys\decoy_doc_11.doc
13:09:48:774 3284 nokmhcu.exe IRP_MJ_CREATE 0 Users\John\Documents\decoys
13:09:48:774 3284 nokmhcu.exe IRP_MJ_SET_INFORMATION 0 Users\John\Documents\decoys\decoy_doc_11.doc
13:09:48:774 3284 nokmhcu.exe IRP_MJ_CLEANUP 0 Users\John\Documents\decoys
13:09:48:774 3284 nokmhcu.exe IRP_MJ_CLOSE 0 Users\John\Documents\decoys
13:09:48:774 3284 nokmhcu.exe IRP_MJ_CLEANUP 0 Users\John\Documents\decoys\decoy_doc_11.doc.ecc
13:09:48:844 3284 nokmhcu.exe IRP_MJ_WRITE 0.4362797442 Users\John\AppData\Roaming\log.html
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